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Contributions of severe burn and disuse to bone structure and strength in rats
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Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss.
Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of
burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations
14 days after injury. Sprague Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/
Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a
40% total body surface area full thickness scald burn. Disuse by hindlimb unloading was initiated immediately
following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were
measured by three point bending tests and bonemicroarchitecturewas determined bymicro computed tomog
raphy (uCT). On day 14, a significant reduction in bodymass was observed as a result of burn, disuse and a com
bination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and
bonemineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups
and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA
compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC,
biomechanical parameters and indices of bone formation are primarily responses to the combination of burn
and disuse. These results offer insight into bone degradation following severe injury and disuse.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Burn injuries of≥40% total body surface area (TBSA) has markedly
reduced bone formation in both adults and children [1]. Burn induces
a systemic catabolic response characterized by increased energy
expenditure [2 4]. This increased expenditure produces a rapid and
severe depletion of body energy stores, which are associated with a
loss of bone calcium and subsequently osteopenia [5,6]. In addition,
it is suggested that bone loss begins in the first 24 hours following
injury due to a rise in proinflammatory cytokines and the surge of glu
cocorticoids over the first week. Both of these responses are directly
linked to an increase in osteoclastogenesis resulting in bone resorption
[7]. Reduced skeletal loading (i.e. bed rest) following any type of injury
can also be a significant contributing factor to loss of bone density and
strength [8]. Bed rest causes an uncoupling of resorption and formation
in the remodeling of bone, which tends to favor resorption, rather than

formation. Remodeling is a surface event, therefore, a larger surface area
has a greater susceptibility to bone loss than thosewith less surface area
bone [9 11]. Thus, it is expected that bone loss due to disusewould tend
to be more severe in trabecular bone than cortical bone because the
trabecular bone has 4× greater surface area than cortical bone [12].
Both bone mass and architecture are key components which influence
the mechanical properties of bone [13].

Bed rest after burn injury is a contributing factor to the overall out
come of the patients’ health and well being. Following 7 days of bed
rest, adult patients with greater than 50% TBSA burn have lower bone
formation rates than patients without burns [1,14]. Reductions in
bone growth and changes in bone remodeling can have long lasting
adverse consequences for patients during rehabilitation. Decreased
bone mineral content (BMC), which occurs within 8 weeks of injury,
may last up to five years due to the reduction in bone formation
[3,5,15] and thusmay be associated with a higher incidence of fractures
and osteoporosis [3,16,17]. Using two and three dimensional imaging
techniques, such as micro computed tomography (μCT), allows for
complete information on the microarchitecture of the bone [13].

Animal models have been used to study the physiological effects
of severe burn or disuse separately [18 22]. Previous animal burn
models are able to replicate the hypermetabolic and insulin resistant
effects of the injury, however, not the musculoskeletal effects from
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disuse. We developed a clinically relevant animal model that repro
duces the physiological and metabolic, as well as the musculoskeletal
responses of a burn patient immediately transferred into bed rest
[21]. In the current study, our clinically relevant animal model of
burn and disuse, both as independent components and in combina
tion, was used to investigate the effects on bone morphometry, turn
over, mass, strength and microachitecture. Understanding bone
structure and microstructure and how it is affected by both burn
injury and disuse is important in determining possible therapeutic
approaches for improved long term quality of life.

Materials and methods

All procedures were approved by the US Army Institute of Surgical
Research Institutional Animal Care and Use Committee and conducted
in accordance with the Guide for Care and Use of Laboratory Animals
[23].

Animals and housing

Male, Sprague Dawley rats were used for this study (Charles
Rivers, Wilmington, MA). Animals were approximately 300 g at the
start of the experiment. Upon arrival, animals were housed in stan
dard vivarium cages and then moved into specialized hindlimb
unloading/metabolic (HLU) cages (144 in2 usable floor area) 6 days
before injury to allow for acclimation [24]. Animals were fed a certi
fied diet (Harlan Teklad #2018) in powder form while housed in
the HLU cages. Food and water were available ad libitum throughout
the study. The room light cycle was set at 12:12 hour (0600 on:1800
off). Room temperature was maintained at 26±2 °C, with a relative
humidity of 30 80% to simulate, as closely as possible, the ambient
temperature maintained in a standard burn unit.

Experimental group assignments

Rats were assigned to one of four experimental groups: Sham/
Ambulatory (SA; n=10); Burn/Ambulatory (BA; n=9); Sham/Hindlimb
Unloading (SH; n=10); Burn/Hindlimb Unloading (BH; n=10). A
block design was used for this study where four animals were weight
matched to each other and then each animal was randomly assigned
to one of the four treatment groups. This assignment was carried out
prior to any experimental manipulations.

Scald injury

Rats randomly assigned to either burn treatment group (i.e. BA or
BH) received a 40% total body surface area, full thickness scald burn
as described by Walker Mason [25]. Rats were anesthetized with
isoflurane (2 3% in 100% O2) throughout the procedure and adminis
tered buprenorphine (0.05 mg/kg s.c) prior to injury. Each rat was
shaved and secured in a plexiglass mold exposing 20% of the total
body surface area of the dorsal side. The dorsal surface was sub
merged in 100 °C water for 10 seconds. The animal was removed
from the mold, administered 20 cc of lactated Ringer's intraperitone
ally, which was based on the Parkland Formula for resuscitation fluids
in burn patients [26], placed back in the mold exposing the ventral
(belly) surface and submerged in 100 °C water for 2 seconds. Sham
groups (SA and SH) were exposed to the anesthesia procedure, shaved
and submerged in water at room temperature. All animals were admin
istered additional analgesics (buprenorphine; 0.05 mg/kg s.c) 6 8 hours
following the scald procedure for 72 hours.

Hindlimb unloading

Following the scald procedure described above, animals were ran
domly assigned to the HLU group were placed in a tail traction system

using an established HLU model [24]. Briefly, the tail was prepared
for HLU by cleaning with alcohol wipes, tincture of benzoin was
then applied, allowing it to become tacky to the touch. A ½ in. strip
of Skin Trac© (Zimmer, San Jose, CA) was secured on the tail, it
was then wrapped in Stockinette, and 3 1 in. strips of filament
fiber tape were applied (base, middle, top). Animals were allowed
to completely recover from anesthesia, approximately 20 30 min,
before being placed in HLU cages and their hind limbs were unloaded
approximately 30° using a hook and pulley system. The pulley system
allowed the animals to have 360° access within the cage environment
without applying load to their hind limbs. Animals were observed
immediately after unloading for any apparent signs of distress and
were monitored several times during the day throughout the study
following the burn/HLU procedure.

Body mass of all animals were measured daily from the time of
arrival until the end of the study. Animals assigned to SH and BH treat
ment groups were weighed using a hook attached to a ring stand
placed on the balance to avoid any type of weight bearing on the
hindlimbs during the weighing procedure [24]. Food and water intake
were measured daily for all groups.

Urine collection

Housing in the HLU cages allowed for the collection of
uncontaminated urine samples. Beginning 1 day before burn/hindlimb
unloading (baseline), 24 hour urinemeasurements were taken. Miner
al oil (0.5 mL) was added to each urine collection tube to avoid any
potential evaporation of the collected urine over the 24 hour period.
This amount was accounted for at the time the urine volume was mea
sured. Urine was aliquoted and analyzed for total urinary calcium
(Ca++) and phosphorus (P) and bone turnover markers.

Bone turnover marker measurements

Plasma osteocalcin (bone gamma carboxyglutamic acid pep
tide), an indicator of osteoblastic activity and bone formation, was
determined by a commercial enzyme linked immunosorbent assay
(ELISA) (Immunodiagnostic Systems, Fountain Hills, AZ). Urinary
deoxypyridinoline (DPD), an indicator of osteoclast activity and
bone resorption and degradation, was measured by commercial uri
nary ELISA (Quidel Corp, San Diego, CA) using a 15 day (Baseline+14
experimental days) pooled sample of 0.01% of the total urine volume
for each experimental day.

At the conclusion of the 14 day study, animals were deeply anesthe
tized with isoflurane (1 3% in 100% O2), bloodwas collected via cardiac
puncture and the animals were euthanized by exsanguination. Blood
was transferred to heparinized vacutainers and kept on ice until
processing. Whole blood was centrifuged at 4 °C, for 15 min at 3000
RPM. Plasmawas collected and stored at−80 °C until analysis. Femurs
were removed, cleaned of any extraneous muscle, wrapped in saline
soaked gauze and stored at−20 °C until further processing.

Micro CT imaging

Contralateral femurs were imaged at the University of Texas M.D.
Anderson Small Animal Imaging Facility (SAIF) in a Locus SP micro CT
unit (GE Medical Systems, London, ON). Each bone was wrapped in
saline soaked gauze and placed in a specimen holder along with a
small 2 mL vial of water and a hydroxyapatite phantom to ensure
CT value Hounsfeld Units consistency. Each bone was imaged at
80 kVp, 80 μA, and at a resolution level producing isotropic 25 μm
voxel data. The scans consisted of 500 projection views at 0.72 degree
increments, with each view having a total exposure time of 12 sec
onds (4 averaged frames at 3 seconds exposure each). Following the
scan and subsequent correction process, each data set was processed
as 3 reconstructions per bone: a 25 μm voxel midshaft region
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SH=194.9±16.9; BH=235.5±30.5; NS). No differences in Ca++ or P
levels were observed between any of the treatment groups (Table 3).

Bone biomechanical strength

Measurements in femur strength were peak force, bending failure
energy, ultimate stiffness, ultimate bending stress and Young's mod
ulus. Bending failure energy was lower in all groups compared to SA
(pb0.001), but no differences were observed between SH, BA and
BH; both burn and disuse had a similar overall and independent effect
on bone outcome which was not additive in this parameter. Ultimate
bending stress, which takes the overall bone size into consideration,
was significantly reduced in the BH group as compared to the other
groups (pb0.001). The shortening of the bone may have a direct influ
ence on this measurement. Young's modulus, which is defined as the
uniaxial stress over the uniaxial strain, was significantly lower in the
BH group as compared to SA and SH (pb0.05); however, there were
no significant differences between BH and BA, suggesting that this
measurement is affected primarily by the burn component (Table 2).

Bone microarchitecture

Using μCT, the effects of burn and disuse, both as independent
contributors and combined, were evident in the full bone, as well as
trabecular and distal regions (Figs. 5a d; Table 4). The total volume
of the region of interest demonstrated an additive effect as BH was

significantly reduced (pb0.03) when calculated as a percent of SA
(84%), BA (92%) and SH (90%). No differences were observed between
BA and SH. The response of burn and disuse independently showed
similar effects between treatments. BMC measured by μCT was signif
icantly reduced from SA in the BA and BH (pb0.001) groups, as was
total mineral content in BA and BH (pb0.001). There was a positive
association observed between ashed BMC and the μCT BMC output
(r=0.62; pb0.001; n=39) validating the two measurements. There
was no effect on BMD, tissue mineral density or bone volume fraction.

Fig. 1. Percent body mass change from day 0 until day 14 after injury. A significant
decrease was observed in all groups as compared to Sham/Ambulatory (SA) (pb0.05).
Burn/Hindlimb Unloaded (BH) was significantly reduced from Burn/Ambulatory (BA)
and Sham/Hindlimb Unloaded (SH) (pb0.05).

Fig. 2. Relationship between ashed femur bone mineral content (BMC) and femur
weight. A positive association was observed, r=0.72; pb0.001, n=39.

Fig. 3. a. Relationship between femur bending failure and ashed femur bone mineral
content (BMC). A positive associationwas observed, r=0.55; pb0.0003, n=39. b. Rela-
tionship between ultimate bending stress and ashed femur BMC. A positive association
was observed, r=0.47; pb0.003, n=39.

Fig. 4. Mean plasma osteocalcin. Burn/Ambulatory (BA) was significantly reduced as
compared to all other treatment groups (pb0.005).
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we feel that any changes would occur early and still would be appar
ent in a pooled sample. To assure possible detection in future studies,
measurements on each corresponding day should be considered.

The use of μCT is an additional tool to determine associations
between bone strength, bone resorption and formation. We found
disuse not only to be a contributing factor, but the burn injury caused
an additive component. The combination injury results in many
changes that are reflected more in the full and trabecular bone rather
than cortical bone. The components affecting the full bone, including
bone volume, BMC and TMC are a direct influence on bone strength
outcome. Trabecular bone, which has approximately four times great
er surface area as cortical bone, shows significant remodeling occur
ring in the combined burn and disuse as well as the burn group.
This is evidenced by bone surface density (BS/BV). Meanwhile cortical
bone in limited indices, was more directly affected by the burn injury.
As compared to controls, changes irrespective of treatment group in
the full bone, as well as cortical and trabecular, suggest significant
alterations occur following this type of severe injury.

By using our clinically relevant animal model for severe burn and
disuse, we were able to demonstrate that the combination of severe
burn and disuse elicits similarmetabolic patterns as observed in victims
of severe burns and elucidates underlying factors contributing to overall
physiological changes in bone. However, as with any animal model,
therewill always be certain limitations as compared to the clinical envi
ronment. Applying a clinically relevant animal model, which is able to
simulate bone metabolism changes similar to those in patients, thera
pies assisting with either the prevention, or possible rehabilitative
activities, can be calculated during the period of disuse following injury.
These interventions can help with problems in bone health that have
been identified in the burn patient population following discharge.
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